

Exploring Reliable, Rule-Based Al and Automated Machine Learning

WELCOME TO OUR WEBINAR

Mikhail Golovnya Senior Advisory Data Scientist

David Peralta Area Marketing Manager

WEB-AUDIO:

Please make sure you have your computer audio system activated and your speakers turned up.

QUESTIONS:

You can enter your questions at any time in the questions section.

About Our Speakers: Mikhail Golovnya

Senior Advisory Data Scientist

Mikhail is a Senior Advisory Data Scientist at Minitab. He has been prototyping new machine learning algorithms and modeling automation for the past twenty years.

Mikhail has been a major contributor to Minitab's on-going search for technological improvements among the most important algorithms in Machine Learning.

Why is Everyone Suddenly Talking About AI?

Minitab 🄁

Chat GPT: Generative AI

How to prepare for evolving global AI legislation

- Generative AI has grabbed the world's attention.
- Generative AI has great potential but also challenging realities:
 - Potential: Improved labor productivity
 - Challenging realities: hallucinating chatbots, hard-toobtain GPU chips, potentially huge liabilities around copyright, concerns about bias and accuracy, impending global legislation.
- Generative AI has crowded out other types of AI techniques, some that have been with us for many years.
- This represents a major opportunity for us to highlight our recent investments.

Intel CEO Now Expects the Chip Shortage To Last Until 2024

Minitab 🚬 🕅

Different Types of Al

Reactive Machines:

 These are basic rule-based systems that operate based on predefined rules.

• Expert Systems:

 These are computer systems that mimic the decision-making ability of a human expert in a specific domain.

Machine Learning (ML) Systems:

- ML is a subset of AI that focuses on developing algorithms and models that enable computers to learn from data.
- Types of ML systems include supervised learning, unsupervised learning, and reinforcement learning.

Neural Networks:

 Inspired by the human brain, neural networks are a key component of many AI systems.

• Narrow AI (Weak AI):

- These AI systems are designed and trained for a specific task or a narrow set of tasks.
- Examples include virtual personal assistants, image recognition software, and language translation services.

Limited Memory:

- These AI systems can learn from historical data to make better decisions.
- Self-driving cars often use limited memory AI to navigate based on past experiences.

Self-aware AI:

 This refers to hypothetical AI systems with selfawareness and consciousness.

Theory of Mind:

• This is a more advanced form of AI that can understand human emotions, beliefs, intentions, and thoughts.

General AI (Strong AI):

- General AI systems can understand, learn, and apply knowledge across diverse domains.
- They can perform any intellectual task that a human being can do.

Superintelligent AI:

 This is a theoretical AI that surpasses human intelligence in every aspect.

Robotics AI:

• Al is often integrated into robots to enable them to perceive, learn, and interact with the environment.

Survey 1

What types of AI are you most likely to use in your work?

- Rule-based/Expert Systems (i.e., Q/A Guides and Wizards)
- Machine Learning Systems (i.e., Predictive Analytics automation)

- Image/Language/Assistant Systems (i.e., Chat GPT, Watson)
- Deep Learning Memory Networks (i.e., self-driven cars)
- Self-Aware/Super-Intelligent Systems (i.e., Skynet)

Minitab 🚬 🕅

Types of AI that MSS Supports or Will Support

Reactive Machines:

 These are basic rule-based systems that operate based on predefined rules.

Expert Systems:

 These are computer systems that mimic the decision-making ability of a human expert in a specific domain.

Machine Learning (ML) Systems:

- ML is a subset of AI that focuses on developing algorithms and models that enable computers to learn from data.
- Types of ML systems include supervised learning, unsupervised learning, and reinforcement learning.

Neural Networks:

- Inspired by the human brain, neural networks are a key component of many AI systems.
- Narrow AI (Weak AI):
 - These AI systems are designed and trained for a specific task or a narrow set of tasks.
 - Examples include virtual personal assistants, image recognition software, and language
 - translation services. . . . + . . .

- Limited Memory:
 - These AI systems can learn from historical data to make better decisions.
 - Self-driving cars often use limited memory AI to navigate based on past experiences.
- Self-aware Al:
 - This refers to hypothetical AI systems with selfawareness and consciousness.
- Theory of Mind:
 - This is a more advanced form of AI that can understand human emotions, beliefs, intentions, and thoughts.
- General AI (Strong AI):
 - General AI systems can understand, learn, and apply knowledge across diverse domains.
 - They can perform any intellectual task that a human being can do.
- Superintelligent Al:
 - This is a theoretical AI that surpasses human intelligence in every aspect.
- Robotics Al:
 - Al is often integrated into robots to enable them to perceive, learn, and interact with the environment.

MSS: Expert Guidance

- Can anyone think of an example of an 'expert machine' in Minitab that mimics the decision-making ability of a human expert in a specific domain?
- Assistant Menu

Two Common Business Problems

- Anyone investing into data collection and management eventually faces the following common needs:
- Problem 1: Find the most accurate predictive model subject to some natural constraints
- Problem 2: Facing a very large number of attributes/features/variables in your data, identify which ones are most predictive of the outcome

AutoML AI addresses the above problems (and more)!

AutoML in Minitab

- Automatic discovery of the best predictive model (regression or classification) among the following families of models (more models to be added in the future):
 - Classical multiple linear or logistic regression
 - Classification and Regression Trees (CART)
 - Random Forests (RF)
 - Stochastic Gradient Boosting (TN)
- Automatic discovery of the key predictors for the stochastic gradient boosting (TN) models
- We will illustrate the first task (best model discovery) using a delinquency prediction dataset and the second task (discover key predictors) using Word Bank / United Nations dataset

Survey 2

How many Predictive Analytics algorithms do you routinely use?

- None
- One or Two
- A handful of favorites
- As many as I can get my hands on

Minitab 🚬 🕅

Delinquency Prediction Dataset

• **Delinquency Prediction** in Banking (Kaggle)

- Predict who will experience at least 90-days past due or other delinquency within the next 2 years (about 6% of the accounts)
- 108,376 instances and 6 predictors
- Binary response variable
- The original raw data available at
 <u>https://www.kaggle.com/c/GiveMeSomeCredit</u>
- In this presentation we use a processed subset of the original data

Variables of Interest

.....+...+

VARIABLE	DESCRIPTION
DELINQUENT	Person experienced 90 days past due delinquency or worse
AGE	Age of borrower in years
DEBT_RATIO	Monthly debt payments, alimony, living costs divided by monthly gross income
MONTH_INCOME	Monthly income
N_OPEN_LINES	Number of open loans (mortgages, car loans, credit cards, etc.)
N_MORTGAGES	Number of mortgage and real estate loans
N_DEPENDENTS	Number of dependents in family excluding yourself

Descriptive Stage -1

Descriptive Stage -2

Baseline Model (Logistic Regression)

Method

Rows used

Link function

Logit

108376

Response Information

Training				
Variable	Value	Count T	est Count	
DELINQUENT	1	3281	3283	(Event
	0	50907	50905	
	Total	54188	54188	

Coefficients

Term	Coef	SE Coef	Z-Value	P-Value	VIF
Constant	-1.6474	0.0776	-21.22	0.000	
AGE	-0.02268	0.00142	-16.01	0.000	1.11
DEBT_RATIO	1.264	0.100	12.58	0.000	1.79
MONTH_INCOME	-0.000045	0.000007	-6.22	0.000	1.62
N_OPEN_LINES	-0.01682	0.00451	-3.73	0.000	1.40
N_MORTGAGES	-0.1169	0.0269	-4.35	0.000	2.00
N_DEPENDENTS	0.1238	0.0152	8.16	0.000	1.09

© 2024 Minitab, LLC

Model Summary

Test set fraction 50.0%

						Test	lest Area
Deviance Deviance Under RO					Jnder ROC		
R-Sq	R-Sq(adj)	AIC	AICc	BIC	ROC Curve	R-Sq	Curve
3.48%	3.45%	23914.57	23914.57	23976.87	0.6534	3.60%	0.6549

Regression Equation

$P(1) = \exp(Y')/(1 + \exp(Y'))$
Y' = -1.6474 - 0.02268 AGE + 1.264 DEBT_RATIO - 0.000045 MONTH_INCOME - 0.01682 N_OPEN_LINES

Algorithm Discovery

Model Selection

	Average	Area Under I	Misclassification
Best Model within Type	-Loglikelihood	ROC Curve	Rate
TreeNet®*	0.2140	0.6997	0.0608
Random Forests®	0.2871	0.6717	0.0606
CART®	0.2357	0.6700	0.3705
Logistic Regression	0.2212	0.6496	0.0606

* Best model across all model types with maximum area under ROC curve. Output for the best model follows.

Hyperparameters for Best TreeNet® Model

Number of trees grown	300
Optimal number of trees	161
Learning rate	0.1
Subsample fraction	0.7
Maximum terminal nodes per tree	6
Number of predictors selected for node splitting Total number of predic	tors = 6

 PROBLEM

 SOLVE

Interaction Discovery

Method

Criterion for selecting optimal number of trees	Maximum area under ROC curve
Model validation	50/50% training/test sets
Learning rate	0.03
Subsample selection method	Completely random
Subsample fraction	0.5
Maximum terminal nodes per tree	6
Minimum terminal node size	10
Number of predictors selected for node splitting	Total number of predictors = 6
Rows used	108376

Relative Variable Importance

Model Summary

Total predictors	6	
Important predictors	6	
Number of trees grown	300	
Optimal number of trees	298	

Statistics	Training	Test
Average -loglikelihood	0.2080	0.2137
Area under ROC curve	0.7285	0.7000
95% CI	(0.7198, 0.7372)	(0.6911, 0.7089)
Lift	3.1779	2.6508
Misclassification rate	0.0603	0.0608

Model Summary

Total predictors	6	
Important predictors	6	
Number of trees grown	300	
Optimal number of trees	298	

Statistics	Training	Test
Average -loglikelihood	0.2120	0.2150
Area under ROC curve	0.7159	0.6921
95% CI	(0.7072, 0.7247)	(0.6831, 0.7011)
Lift	2.7937	2.5411
Misclassification rate	0.0605	0.0606

· · · · + · ·

Survey 3

How many variables do your datasets usually have?

	Sinale diaits		
	T		
	Iens		
			· · + · · · · ·
	Hundreds		
	Inousands		
			· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		· + · · · · · · · + · · · · · ·
· · · · · + · · · ·	+ +		
		···+····+····+···+····+····+····+····+····	© 2024 Minitab, LLC

World Hunger Dataset

- Understanding the key drivers associated with world hunger is crucial for setting up international policies and efforts to provide necessary relief
- Both World Bank and the United Nations provide useful public datasets to researchers
- The datasets include various annual socio/economic indicators for different world countries/regions covering the period from 2000 to 2018 (pre-covid)
- Our focus of interest is which socio/economic indicators are predictive of the prevalence of undernourishment (hunger) within a region
- After data preparation and merging, our final modeling dataset has 98 variables and 4780 observations

Descriptive Statistics - 1

Statistics				FOOD_PRODUCTION	4445	335	78.054	POLITICAL_STABILITY	3632	1148	-0.0591	
		N 1 4		FOREST_AREA	4755	25	32.770	POPULATION_AGED	4572	208	7.5819	
Variable	N	N^	Mean	- FOSSIL_CONSUMPTION	2849	1931	65.453	POPULATION DENSITY	4769	11	229.2	
TEST	4780	0	0.10000	GDP_GROWTH	4679	101	3.841	POVERTY RATIO	856	3924	24.210	
CLEAN_FUEL	4717	63	61.902	GHG_NET_EMISSIONS	448	4332	-43.83	POPULATION OVWT	3978	802	43,178	
ELECTRICITY	4756	24	78.123	GINI INDEX	1393	3387	37.386		3857	923	11 446	
NR_DEPLETION	4391	389	4.586	GOV EFFECTIVENESS	3601	1179	-0.0709		4565	215	17 670	
FOREST_DEPLETION	4431	349	1.2658	EDUCATE EXPENSE	3069	1711	14 761		4303	200	60.676	
AG_LAND	4488	292	38.499	HOSPITAL REDS	2679	2101	3 5652		2601	1170	09.070	
NR_VALUE_ADDED	4501	279	11.650		1300	2300	6 6055		2020	052	-0.0764	
H2O_WITHDRAW	717	4063	126.5		4500	100	20 740		3828	952	30.210	
INCOME_GROWTH	106	4674	2.530		4390	200	67 271	ENERGY_KEINEW	4365	415	32.424	
PREV DEATH	916	3864	24.577		4400	175	07.271	RD_EXPENDITURE	2157	2623	1.0492	
CHILD WORK	267	4513	21.09		4605	1/5	09.388	RULE_OF_LAW	3645	1135	-0.0744	
CO2 EMISSIONS	4503	277	4.3065	LITERACY_RATE	1503	3277	80.038	SCHOOL_ENROLL_P	4000	780	102.67	· · · + · · · · · ·
	3606	1174	-0.0722	MAMMALS_THREAT	239	4541	162.2	SCHOOL_ENROLL_PS	3463	1317	0.96971	
	165	4615	1 101	METHANE_EMISSIONS	4503	277	1.7154	SCIENCE_ARTICLES	4541	239	60980	
	105	4015	06.60	MORTALITY_RATE	4760	20	41.361	LEGAL_RIGHTS	1617	3163	5.1047	· · · · · · · · · · · ·
EASE_BUSINESS	2005	4395	90.09 10 AE A	NET_MIGRATION	916	3864	-443204	PROTECTED_AREAS	899	3881	12.648	
ELECTRICITY_COAL	2895	1885	19.454	NOX_EMISSIONS	4492	288	0.5369	UNEMPLOYMENT	4480	300	7.8170	
ENERGY_IMPORTS	2781	1999	-34.45	PATENTS	2292	2488	49478	UNMET_CONTRACEPTION	500	4280	19.429	
ENERGY_INTENSITY	3738	1042	5.5245	SAFE_H2O	2691	2089	67.877	ACCOUNTABILITY	3657	1123	-0.0478	· · · + · · · · · ·
ENERGY_USE	2848	1932	2291.9	SAFE_SANITATION	3090	1690	51.106					
FERT_RATE	4617	163	2.9782	AIR_POLLUTION	2320	2460	30.688	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · ·

Descriptive Statistics - 2

- We are challenged by the sheer number of available variables
- The following descriptors may significantly impact follow-up analyses
 - Categorical values
 - Missing values
 - Extreme values
 - Dependencies

Graph Builder – MSS Rule-based AI machinery – is designed to address this challenge quickly and efficiently!

Statistics

Variable	Ν	N*	Mean				
211_PREV_UNDERNOURISH	2643	2137	10.743				
211_POP_UNDERNOURISH	1843	2937	15.39	231_PROD_LSFP	105	4675	572
212_PREV_MFOOD_INSEC	472	4308	27.03	231_PROD_SSFP	110	4670	52.9
212_POP_MFOOD_INSEC	472	4308	37948	232_INCOME_LSFP	73	4707	649
212_PREV_SFOOD_INSEC	475	4305	9.788	232_INCOME_SSFP	78	4702	127
212_POP_SFOOD_INSEC	475	4305	13437	251_BREEDS_GENETIC	290	4490	1.61
221_PROP_STUNTED	597	4183	26.439	251_PLANT_GENETIC	963	3817	7619
221_POP_STUNTED	2740	2040	2857	252_PROP_BREEDS_RISK	1808	2972	47.19
222_PROP_WASTED	552	4228	6.390	2A1_AG_VALUE_ADDED	3197	1583	12.06
222_POP_WASTED	552	4228	452.6	2A1_AG_ORIENTATION_INDEX	2305	2475	0.567
222_PROP_OVERWEIGHT	575	4205	6.416	2A1_AG_GOV_EXPENDITURE	2305	2475	2.954
222_POP_OVERWEIGHT	2740	2040	510.7	2A2_TOT_FLOWS	2423	2357	77.60
223_PROP_ANEM	3340	1440	27.722	2B1_AG_EXPORT_SUBSIDIES	455	4325	119.
223_PROP_ANEM_NP	3340	1440	27.418	2C1_FOOD_PRICE_ANOMALIES	1528	3252	-0.151
223_PROP_ANEM_PR	3340	1440	32.501				· · · · · · · · · · · · · · · · · · ·

Graph Build	er					— [
C1	REGION	🛝 Histogram		A .	1	中中		
C2	YEAR	Continuous variables	Graph Gallery	Histogram	Probability Plot	Boxplot	Individual	
C3	TEST						Plot	
C4	CLEAN_FUEL							
CS	ELECTRICITY							
C6	NR_DEPLETION							
С7	FOREST_DEPLETION	A Layout and Grouping						
C8	AG_LAND	Layout						
C9	NR_VALUE_ADDED	Separate graphs for each continuous variable						· · · · · · · · · · · · · · · · · · ·
C10	H2O_WITHDRAW	Group variable						· · · · • + · · · · · · · · · · · · · ·
C11	INCOME_GROWTH			Histogram	requires at leas	st one		
C12	PREV_DEATH	By variables		cont	inuous variable.			· · · · · · · · · · · · · · · · · · ·
C13	CHILD_WORK							
C14	CO2_EMISSIONS							+++++++++++++++++++++++++++++++++++++++
He	lp Reset				Create	Ca	ancel	© 2024 Minitab, LLC

Eliminating Dependencies

- Prevalence of Undernourishment is the response variable of interest
- Using Graph Builder and common sense, we have decided to drop UN indicators 2.1.1, 2.1.2, 2.2.1, 2.2.2, 2.2.3 because they are the **direct effects** of undernourishment and not its causes
- We kept all remaining indicators, including the ones largely missing

Setting Up Predictor Discovery

TreeNet® Regression - Discover Key Predictors

3 TEST 73 211_PREV_UNDER	Response:	'PREV_UNDERNOURISH'			
75 212_PREV_MFOO 76 212_POP_MFOOD	Continuous p	predictors:			
77 212_PREV_SFOOD 78 212_POP_SFOOD 79 221_PROP_STUNT	'CLEAN_FUE '231_PROD_	iel'-'Population_ovwt)_lsfp'-'2c1_food_price	'WOMEN_PARLIAM _ANOMALIES'	IENT'-'SCIENCE_ARTICL	ES_L10'
81 222_PROP_WAST 82 222_POP_WASTED 83 222_POP_WASTED	Categorical pr	predictors:			
33 222_PROP_OVER 34 222_POP_OVERW 35 223_PROP_ANEM					-
36 223_PROP_ANEM 37 223_PROP_ANEM			Predictor Eliminat	tion Validation	Options
Select			Graph	s Results	Storage
Help				ОК	Cancel

Х

Setting Up Predictor Discovery

TreeNet® Regression - Discover Key Predictors: Predictor Elimination

	Method: Eliminate unimportant predictors Eliminate K predictors at each step; K = 1
	Maximum number of elimination steps: 100
	Specify predictors to be removed last:
Select	Display model selection table: For test set
Help	Cancel

X

Setting Up Predictor Discovery

TreeNet® Regression - Discover Key Predictors: Validation

Help

0.K

Cancel

X

Final Model Selection

Select an Alternative Model

Final Model Selection

Select an Alternative Model

Minitab 🚬

Number of Eliminated Predictors

Model	Optimal Number of Trees	R-squared (%)	Number of Predictors	Eliminated Predictors
55	300	86.01	7	NR_VALUE_ADDED
56	299	86.82	ر اس 6	SCIENCE_ARTICLES
57	300	83.53	5	RULE_OF_LAW
58	242	80.81	4	F2M_LABOR
59	278	80.47	3	CO2_EMISSIONS

Display Results

Cancel

Final Model

Relative Variable Importance

Model Summary

Total predictors	
Important predictors	
Number of trees grown	3
Optimal number of trees	2

Statistics	Training	Test
R-squared	91.85%	86.82%
Root mean squared error (RMSE)	3.1675	3.8099
Mean squared error (MSE)	10.0328	14.5156
Mean absolute deviation (MAD)	2.0640	2.4547
Mean absolute percent error (MAPE)	0.2435	0.2850

 60% and 80% electrification provide major markers associated with significant reduction in the prevalence of undernourishment

2024 Minitab, LLC

2024 Minitab, LLC

 Introduce minimal level of industrialization while allowing for manageable levels of CO2 emissions (small footprint)

 Develop policies aimed at reasonable balance between male and female labor: avoid both extremes

 Develop local policies aimed at increasing government effectiveness and promote the rule of law

Problem 2 solved! AutoML has identified 6 relevant predictors out of the initial 97

Conclusion

- Graph Builder Rule-Based AI feature allows to quickly explore individual variables and their mutual dependencies
- Discover Best Model AutoML AI feature allows to quickly zero in on the most accurate model that suits your data
- Discover Key Predictors AutoML AI feature allows to identify which variables to focus on
- AutoML AI saves a huge amount of manual modeling effort and will give you a real advantage over your competitors!

Q&A

+

??

Ø

?

?

?

-

?

9

?

?

?

2

Upcoming In-Person Events

Dates and Location in the US

- Rosemont, IL June 18th
- Columbus, OH August 15th
- Dallas, TX September 10th

Minitab **>**

EXCHANGE

• Anaheim, CA – Date TBD

You have data. We have solutions. Imagine the possibilities.

At Minitab, we help customers around the world leverage the power of data analysis to gain insights and make a significant impact on their organizations. By unlocking the value of data, Minitab enables organizations to improve performance, develop life changing innovations and meet their commitments of delivering high quality products and services and outstanding customer satisfaction.

Minitab 🚬 🕅

thank VOU

+ +

